当前位置:首页 > 神州学人杂志 > 期刊 > 2011年第9期 > 正文

数学苍穹闪烁中国新星

2011年09月14日  来源:神州学人 
  

文/王丹红  易蓉蓉
  2010年10月,SASTRA拉马努金奖委员会宣布,将2010年度SASTRA拉马努金奖授予29岁的中国数学家、哈佛大学数学系讲师张伟。评奖委员会主席、美国佛罗里达大学数学教授K.阿拉底(Krishnaswami Alladi)在颁奖词中说:“通过自己的努力和与他人的合作,张伟博士在数论、自守形式、L函数、迹公式、表示论和代数几何等数学的广泛领域,作出了影响深远的贡献……因为他早期的奠基性工作和最近的2项工作,张伟博士已经成为他所在领域的国际领袖。”
  为纪念印度的天才数学家斯力瓦萨·拉马努金(Srinivasa Aiyangar Ramanujan),2005年,位于拉马努金故乡贡伯戈讷姆市的Shanmugha文理工研究院(SASTRA)创立了SASTRA拉马努金奖。该奖每年颁发一次,授予在拉马努金研究领域作出杰出贡献的年轻数学家。获奖者的年龄限制在32岁以下,因为拉马努金是在他32岁的短暂生命中作出了辉煌的数学成就。颁奖礼于12月22日——拉马努金的生日当天举行,张伟获得1万美元的奖金。
  美国纽约哥伦比亚大学数学系教授张寿武是张伟的博士生导师,他说:“其实,张伟是目前在国际数学界非常有影响的一批年轻的中国数学家之一,这批人我知道的就有10人左右,他们非常聪明,而且是同一代人,其中五六个是北京大学数学系2000届的学生,张伟的同班同学,包括袁新意、恽之玮、朱歆文等。另外几位同一届清华大学的学生,他们每个人的水平都与我们相差无几!他们是中国数学的未来,到他们的时代,应该是中国数学最辉煌的时候。”
  张寿武讲述了张伟和袁新意等年轻数学家的故事,他说:“我只是想告诉大家,我们有这么好的年轻数学家,他们做出这么好的工作,他们是中国的希望。”  
  
读博第二年完成博士论文
  张伟1981年7月出生于四川省达县的一个农村家庭,在成都市第七中学毕业后,被保送进入北京大学数学科学学院。他这一届的同学群星灿烂:包括2000年度的国际奥林匹克数学冠军恽之玮、袁新意、吴忠涛和刘志鹏,以及2000年中国奥林匹克数学竞赛冠军朱歆文等。
  2004年,经北京大学数学科学院2位教授推荐,张寿武录取张伟作为他的博士研究生,“他的同班同学袁新意提前一年毕业,2003年就来我这里了,袁新意做得很好,这也是我录取张伟的原因之一。”
  张伟给张寿武的第一印象很有趣:“他和袁新意的性格正好相反。袁新意是一个很沉稳的人,一般说来不会轻易对新问题下结论,他要先找很多反例,当找不到反例时,他就把它做出来了;张伟的性格刚好相反,你跟他说什么他都很有兴趣,而且想法很多,给人天马行空的感觉,不仅对数学的想法多,而且对文学、历史、书法都很有见解。”
  刚开始带张伟时,张寿武担心他思想太活跃、不能专心做学问,时常提醒他说:“不能到我办公室胡说八道,要好好做学问,这是第一年。”
  到哥伦比亚大学几个月后,张伟顺利通过博士资格考试,他找张寿武要题目做。张寿武的观点是:最好的学生自己找题目自己做;一般的学生做老师给的题目;最差的学生可能都看不懂老师给的题目。于是,他对张伟说:“你自个儿先找题目,找不到题目我再给你。”
  张伟找了半天也没找到像样的题目。不久后,2005年秋天,张寿武开车带着袁新意和张伟从纽约到马里兰州,参加马里兰大学举办的美国国家基金会一个研讨会。在这次会上,张寿武讲解了库达拉猜想(Kudla Conjecture),回到哥伦比亚之后,他突然想到,能不能尝试库达拉猜想中模性(Modularity)的问题,因此就对张伟说:“你就做做这个题吧!”
  “我也没指望他能做出来,因为这个学生找你麻烦,你给个题目让他忙着,当时的想法就是让他忙着。所以,一开始,我就让他做最简单的例子,然后再往复杂去做。”
  张伟忙了两三个月,大约在2005年底,已经回到中国的他突然给张寿武来信说:他知道怎么做这个东西了。张寿武说:“好,你赶快回来吧。然而,回来之后,我才发现他不是按我的思路去做的,也就是说不是先做简单的再做复杂的,他一下子就全部做了,这让我很惊讶!”
  在博士研究生的第二年,张伟就库达拉猜想问题写出了论文。
  不仅如此,张伟的博士论文也促成了他与袁新意、张寿武的一系列合作。
  
非常愉快的多人合作
  在张伟写博士论文之前,正在读博士三年级的袁新意已写好了他的博士论文,但他也不想走。张寿武就对2人说:“做完博士论文,我与你们的师生关系就结束了,你们不走,咱们就做个朋友,一起做做学问。”他将自己的2个题目——格罗斯-乍基亚公式(Gross-Zagier)和三乘法L-函数(Trip product L-function)公式拿出来。
  张寿武从1997年开始做格罗斯-乍基亚公式,2001年,他完成了这个公式一个重要的工作,他一直在琢磨这个神秘的公式:“我能证明它是对的,但我并不明白在更深层次上,它为什么是对的。我一直在想,怎样把深藏在这个公式背后的秘密挖出来。”2005年,他带着张伟和袁新意重新探索这个公式。
  “正因为张伟的毕业论文对了,我们合作的这些工作才成为可能;假如他的东西不对,我们继续做下去是没有意思的。我从1997年开始做这个公式,但有些最关键的东西我没有做下来,所以,我为什么要重视模性,这也是我为什么让张伟来做这个东西的原因,这对我们以后的工作是至关重要的一步。”
  模性是数学上一个满足一些泛函方程与增长条件的解析函数。张寿武说:“模性非常重要。安德鲁·怀尔斯在证明费马大定理时,他最重要的工作就是模性,他证明了一个级数满足一系列对称性,这一对称性证完后,他就证明了费马大定理。在我们的工作里,也是一个级数,如果这个级数对称了,就能做一般的格罗斯-乍基亚公式,我前面的一些工作都是假设了一些条件,我要是把这些条件去掉,就必须要有新的办法,新办法最重要的一步就是母函数的模性。”
  3人合作的第一项,是将张伟在博士论文中的工作推广到全实域,张寿武说:“推广到全实域后,下面才能用,基本出发点是张伟的论文。”他们的文章发表在2009年出版的荷兰期刊《数学文献》上。
  3人合作最重要的成果是关于志村簇上复乘点的高度。他们建立了瓦尔斯普尔热(Waldspurger)公式在算术代数几何下的一个模拟,瓦尔斯普尔热公式是给出积分周期和L函数特殊值之间的关系的一个重要公式。这篇论文远远走出了现有的格罗斯-乍基亚公式,论文太厚了,最后决定变成一本书,因此,这篇论文将以书的形式出版在《普林斯顿数学研究年刊》上。
  他们的合作非常愉快。张寿武说:“袁新意与张伟各有长处,袁新意是奥数冠军队成员,他的基本功没人可比,如果他说一个结论是对的,就肯定是对的;张伟思想太活跃,有很多想法。有些是对的,有些不完全对,但很有发展的价值。两个人的性格完全不一样,与他们在一起真是非常愉快。这对我来说恐怕也是千载难逢的机会:哪有这么好的年轻的学生做好论文后还不想走,在这里待下来?!”
  
师承相传  因缘际会
  如果说早期的几篇论文中都有张寿武的指导和合作,张伟在其中显示了极高超的技术能力的话,那么,他最近在算术相对迹公式方面的工作则证明他有独立处理重要大问题的能力。这些工作包含在他2篇尚未正式发表的预印本中,一个是相对迹公式和格罗斯—普拉萨德猜想(Gross Prasad Conjecture),一个是算术基本引理。
  谈到基本引理的重要性,张寿武解释说,因为证明了朗兰兹纲领自守形式中的“基本引理”,38岁的越南数学家吴宝珠获得了2010年的菲尔茨奖。吴宝珠证明的是自守形式中的经典迹公式的基本引理;自守形式中的相对迹公式的基本引理,则是由张伟在北京大学的同班同学、美国麻省理工学院的恽之玮证明的。
  经典迹公式下的基本引理,很多大数学家都作出了很大的贡献,到吴宝珠的时候,他集大成,把这些方法合在一起,第一个证明了基本引理。“张伟、袁新意和恽之玮是好朋友,他让恽之玮去证明相对迹公式下的基本引理,恽之玮是专门做基本引理的,他是用吴宝珠的方法来做的。”
  张伟是怎么知道要做相对迹公式的基本引理呢?是张寿武建议的,因为自守形式中相对迹公式下的基本引理是哥伦比亚大学教授贾戈尔(Jacquet)和俄亥俄大学的教授阮丽斯(Rallis)提出来的。
  贾戈尔是现代自守形式专家。1986年,当张寿武还是哥伦比亚大学数学系的博士生时,贾戈尔让他做一些相对迹公式,但他一点兴趣都没有,“因为它关注的是自守形式,我对自守形式没有什么兴趣,当时我也不知道它可以用来推广格罗斯-乍基亚公式。我跟贾戈尔学了相当长的时间,对他的东西还是很清楚的。”
  因缘际会,20多年后,张寿武又让他的学生来做自守形式下相对迹公式的基本引理。在2008年的一个暑期的晨兴讨论班上,田野作了第一个关于相对迹公式的报告。“所以说,张伟的工作是继承和发扬了哥大在自守形式方面的一个传统。我的贡献是告诉他们往哪个地方走。”
  张伟非常聪明,他以光一样的速度阅读了所有的相关论文,以光一样的速度将问题弄清楚了,并证明了其中2个基本引理。然而,与张寿武一样,他真正想做的也不是自守形式下的相对迹公式下的基本引理,他的兴趣在算术相对迹公式下的基本引理,他和袁新意将自守形式下相对迹公式的基本引理问题告诉了同学恽之玮。与此同时,他成功地将贾戈尔—阮丽斯的一些技术移植到算术相交理论中,并在志村簇上算术相交理论的知名猜想中取得决定性进展。
  在张伟的一篇预印本中,他成功地描述了算术基本引理。
  张寿武说:“这个引理比吴宝珠和恽之玮的引理更难,在他之前,人们并不知道什么是算术基本引理。所以说,张伟的贡献是把这个问题提出来了,他在基本引理前加了‘算术’两个字,这就是他不一样的地方。换句话说,将来几十年大家都要做张伟的问题。提问题的人的水平比做问题的人更有远见。如果说以前是我提的问题,那么后面的问题则是他自己提出来的。”
  K.阿拉底在2010年SASTRA拉马努金奖的文章中评价:“因为这2篇预印本论文和他早期的基础性工作,张伟博士已经成为他所在领域的世界领袖。”
  张寿武认为,自守形式和算术相交理论,属于数学里的两个领域,一直到张伟把它做完,才将这两个领域联系在一起,其实,他没有做那么多东西,他只做好了一个东西,但这个东西处于所有这些领域的交叉中心,这就是为什么他的贡献被认为不仅在于数论,而且在于代数几何和表示论等多个领域。
  
他们可以为中国数学作出
划时代的贡献

  当年北京大学数学系意气风发的学子,如今木已成林。刘若川,美国普林斯顿高等研究所博士后;恽之玮,美国麻省理工学院博士后;袁新意,美国克莱数学研究所博士后;宋诗畅,美国伊利诺伊大学香槟分校博士研究生;肖梁,美国芝加哥大学博士后;许晨杨,美国麻省理工学院博士后。
  张寿武教授曾经感叹:“厉害就厉害在他们不是一个人,而是一批人,他们有什么东西不懂,就马上打电话给同学,同学也是另一行的高手,马上就知道是怎么回事了,他们之间不是相互竞争者,而是合作者。”
  面对这一批横空出世的数学新星,张寿武说,他们这批人的成功真是非常奇怪,一届里突然出现了这么多人,以前没有出现过这种现象,之后也没有出现过,“他们说,北大数学科学学院杨磊和高峡2位教授,对他们这批学生的影响很大。学生的激情都是受他们的鼓动的,由此,这批学生才做得非常好。”
  “袁新意毕业时也做得很出色,他在毕业那年就获得了克莱数学研究所的克莱研究奖,他是第一个获得克莱研究奖的中国人”“他们这批人确实比我们这一代人做得好,我们这些改革开放后出国的人,没有哪一个人在这么年轻时就获得国际数学界这么高的承认。他们是中国数学的未来。”

从左至右为:刘若川、恽之玮、袁新意、宋诗畅、肖梁、许晨杨。 供图/张寿武



  文章中观点仅代表作者本人的观点,不代表本网站的观点和看法。

  神州学人杂志及神州学人网原创文章转载说明:如需转载,务必请注明出处,违者本网将依法追究。

编辑:KYU
相关文章